
N U M E R I C A L  M O D E L I N G  O F  T U R B U L E N T - T R A N S F E R  

P R O C E S S E S  IN  A M I X I N G  Z O N E  

A .  F .  K u r b a t s k i i  
UDC 532.517.4 

The s e r i e s  of m o m e n t s  of the veloci ty  field in a two-dimens ional  zone of mixing is calculated 
in this a r t i c le  by numer ica l ly  solving a s y s t e m  of t u rbu l en t - t r ans f e r  different ial  equations 
der ived  f r o m  an equation for  a s ingle-poin t  dis t r ibut ion function of the veloci ty  pulsat ion field 
[i] and s impl i f ied  to an approximat ion  of the boundary l aye r .  The closed fo rm of the t r a n s f e r  
equation is obtained at  the level  of the th i rd  moment s  using the Mill ionshehikov hypothesis  [2]~ 
The different ia l  ope ra t o r  of the s y s t e m  under this c losure  turns out to be weakly hyperbol ic  [3], 
and not pa rabo l ic .  A di f ference  scheme  is p roposed  that r ea l i ze s  the method of ma t r i x  fitting 
[4]. A compar i son  is c a r r i e d  out with an expe r imen t  [5, 6] o 

1 .  T u r b u l e n t  T r a n s f e r  D i f f e r e n t i a 1  E q u a t i o n s  

in  a T w o - D i m e n s i o n a l  Z o n e  o f  M i x i n g  

A model  of turbulent  t r a n s f e r  has  been  desc r ibed  [1] in which equations were  der ived for the mean  
values  and second m o m e n t s  of the ve loc i ty  field f r o m  an equation for  a s ingle-point  dis t r ibut ion function 
for  the ve loc i ty - f ie ld  pulsa t ions .  Equations for  momen t s  of higher  o rde r s  can be obtained analogously.  
Equations will be wr i t ten  out below for  the moments  of the f i r s t  three  o rde r s  of the veloci ty  field for  a 
nonhomogeneous turbulent  flow, which are  r e f e r r e d  to the developed turbulent  flow of a comple te ly  tu r -  
bulent fluid [1] under  s t e a d y - s t a t e  ex te rna l  conditions in the absence  of a p r e s s u r e  gradient .  

The continuity equation is given by 

o <~k> = O. (i.I) 
aa:~ 

The equation for  conserva t ion  of momen tum for  the mean veloci ty  is given by 

(1.2) 

The equation for  the t en s o r  components  of the turbulent  s t r e s s e s  is given by 

. . . . .  / ,  , . a < ~ . > +  , , a / ~ o \  

ax h 

3 a. E1/2 ~(u~zu~> -r F ' -  
4 L 

The equation for  the third momen t s  of the ve loc i ty - f ie ld  pulsat ions* is given by 

(1.3) 

*Equations (1ol)-(1.3) were  p re sen t ed  in [1]. 
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The equation for the mean density of the kinetic energy for pulsating motion [obtained by summing 
Eq. (1.3) over a = fi] is given by 

! [<=~> E + <E'.,,;>] + <,&;> o <%> _ 
ax k Ox k 

3 ao igat2 (1o5) -g-g-_ . 

The equation for turbulence intensity along separate  coordinate axes (not summed over  a l ) is g ivenby 

, . ,  . . . o @ = >  3 . o p  u ~ n  bo , ~ [ ~  ] 
ax~ 

(L6) 

In Eqs.  (1.1)-(1.6) we have set  

1 , ,  E, t ," [9 I - t ,  E = T <u~uk>;  = -~  u~ ; u = L �9 ~- ao + bo 

where L is the scale of turbulence charac te r iz ing  the "mean dimension" of the turbulent elements  in the 
flow [1] and a 0 and b 0 are  empir ica l  constants .  

The sys tem of equations (1.1)-(1.6) is not closed, and the number  of unknown functions is g rea te r  
than the number of equations. To obtain closed equations, we use the hypothesis of fourth moments  [2], 
according to which the fourth moments  of a velocity field are  expressed  in t e rms  of the second moments  
Using equations that are  true for a normal  distribution, 

(1.7) 

Let  us consider  the two-dimensional  turbulent-mixing problem of a plane homogeneous flow with 
s ta t ionary fluid (called the "jet  edge" problem) (Fig. 1). More prec ise ly ,  we will consider  s teady-s ta te  
plane flow of boundary- layer  type, in which the mean values are  independent of one of the Car tes ian coor -  
dinate axes and in which the component of the mean veloci ty along this coordinate is identically zero .  The 
scale size of the flow region along one of the remaining coordinate axes is assumed to be much less than 
the scale size along the other axis, which in the case of the flow depicted in Fig. 1 is experimental ly con- 
f i rmed [5, 6]. Equations (1.1)-(1.6) are  simplified in this sense by drawing on experimental  data [5, 6]. 
The resu l t  of this simplification is the following sys tem of tu rbulen t - t ransfer  equations: 

a<u> a@> a<u> , , a < u >  La@'v '>--0 ;  (1.8) a~ + ~ = 0; <u> T + qv )  o~ "-' o,j 
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The th i rd  moments  a r e  (approximate ly)  e x p r e s s e d  f rom the l a s t  th ree  equations of the s y s t e m  (1.8) in 
t e r m s  of the second moments  by means  of the equations 

. . . . .  0 <,,'> a <u,,,>] 
- -  <u'v:> ~ ~E -' /2 [(~ v 2 ~ + 2 <v'~ -----5-]--y l; (1.95 

- -  <E'. v'> ~ n E  - i / 2  (v" :-)-.~y 

Afte r  subs t i tu t ing  Eqs.  (1.9) in Eqs .  (1.85 we obtain a sy s t em of five equations for  de te rmin ing  the mean 
va lues  and second momen t s  of the v e l o c i t y - f i e l d  pulsa t ions ,  

o <~> + 0 @> 0 <~> o <,0 , 0 @'v'> _ 0; (1.10) 
Ox T = 0 ;  <u> ~ + @> oy ; .% 
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The s y s t e m  (1.10) i s  wr i t t en  in d imens ion les s  fo rm.  The ve loc i ty  of the m a i n s t r e a m  flow U 0 is  taken as 
the sca le  s ize  of the ve loc i ty  (of F ig .  15. No l inea r  sca le  s ize  ex i s t s  for  the zone of mixing.  We should 
t h e r e f o r e  expec t  the deve loped  turbulent  s t r u c t u r e  of th is  flow to be s e l f - c o n s i s t e n t  (this is  conf i rmed  by 
e x p e r i m e n t  [5, 6]). The spa t i a l  v a r i a b l e s  x and y in Eqs.  (1.10) a re  d imens ion l e s s ly  e x p r e s s e d  by means  
of an a r b i t r a r y  l i nea r  sca le  for  the (numerical )  solut ion.  The numer i ca l  r e s u l t s  a r e  r e p r e s e n t e d  in t e r m s  
of the s e l f - c o n s i s t e n t  v a r i a b l e  77 = x / y  for  c o m p a r i s o n  with the e xpe r i m e n t a l  data .  

The equation for  the turbulence  sca le  L is  de r ived  on the b a s i s  of concepts  of d imens iona l i ty  and 
s imi l i tude  and a g r e e s  with the e x p e r i m e n t a l l y  d i s c o v e r e d  [5, 6] s e l f - c o n s i s t e n t  flow s t ruc tu re ,  

L = a x ,  (1.115 

where  a is  a p ropo r t i ona l i t y  f ac to r .  The turbulence  sca le  de t e rmined  by Eq. (1.11) has  the same  functional 
fo rm as the in t eg ra l  turbulence  s ca l e .  However,  the turbulence  sca le  L ("mean dimension" of an e lement  
of fluid in the flow) is  not equal to the in tegra l  sca le ,  but is  p ropor t iona l  to i t .  If the in tegra l  turbulence 
sca le  can be found f rom (longitudinal  and t r a n s v e r s e )  c o r r e l a t i o n  functions m e a s u r e d  in an expe r imen t  [6], 
the sca le  L, which is  an in t eg ra l  of the s p e c t r a l  d i s t r ibu t ion  of turbulent  kinet ic  ene rgy  over  the en t i re  
space  of wave numbers  [1, 7], is  not expe r imen ta l l y  de t e rmined .  Consequently,  the value of the p r o p o r -  
t ional i ty  fac tor  a a l so  cannot be found f rom the expe r imen ta l  data .  The r a t i o  of the e m p i r i c a l  constants  a 0 
and b 0 to the  turbulence  sca l e  L eve rywhere  occur s  in the r ight  s ides  of Eqs .  (1.10). This  p e r m i t s  the 
r a t io  a o / L ( a o / a )  to be found by compar ing  a t heo re t i ca l  approximat ion  for  the d i s s ipa t ion  of turbulent  kin-  
e t ic  energy,  having the fo rm 

8 = x -3 3 a0 p3/2 (1.125 
U0 T Z - ~  ' 
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to the experimental  values for this magnitude obtained by adding the mean squares  of the derivat ives ,  which 
determine the dissipation e. Some of these derivatives were measured  in an exper iment  [6], while the 
others  were expressed  in t e rms  of measured  values by drawing on a number of hypotheses .  The equation 
for  the dissipation rate  (1.12) sa t i s fac tor i ly  approximates the experimental  distribution of the variable 
when the rat io (a 0/~)  ~ 6 is constant.  The ra t io  of the dissipative and exchange constants (3/4)a0/b 0 (in 
numer ica l  calculations) was taken equal to one. 

We may complement  the sys tem (1.10) with a differential equation for L. However, the number of 
"empi r ica l  constants" grows, at least  to six, only a small  number of them being "taken f rom experiment."  
The remaining constants require  for their  determinat ion a somewhat significant computational optimization 
[8, 9]. Cur ren t  in the zone of mixing is fo rmed by an external  homogeneous flow moving with constant 
veloci ty U0, so that at "negative infinity" five conditions are  set  for the five des i red  functions defined by 
the sys tem (1.10): 

as g-~ -- ~ : ( t0-+l;  (u'v'>--~0; E-->E; <v'~) - ,  @">_; <v>-+0. (1.13) 

At the  external  boundary of the zone of mixing, adjacent to the quiescent  fluid, the following physical ly ob- 
vious boundary conditions are homogeneous:  

as Y -~ ~- ~ : (~)> : ~idv'> -= E ---- <v'"> = 0, (I  .14) 

while the condition on the function (v'2> on the external boundary is a consequence of the condition on the 
function E.  The condition (v(x, - ~o)) = 0 for the zone of mixing is not completely obvious and requires  
explanation. The pat tern of the mixing of a homogeneous semi-infini te  flow with quiescent fluid (cf. Fig. 
1) was idealized. In fact, the zone of mixing is always formed at the boundary of a jet of finite width with 
a surrounding stat ionary fluid. We may therefore  assume that the t r ansver se  veloci ty (v> vanishes along 
a s t reamline  near  the axial jet line, i.e., this s t reaml ine  (and, consequently, the cha rac te r i s t i c  k~ --- dx: 
dy = (u> / (v ) )  is a s t ra ight  line. 

The conditions of Eqs .  (1.13) and (1.14) are  set  for  a "sufficientIy large" distance f rom both bound- 
ar ies  of the zone of mixing, in which the des i red  functions begin to vary  in absolute value within a p re -  
assigned accuracy .  All five des i red  functions must  be defined in the initial section at x = x 0` The func- 
tions ~u>, E, and (v '2> in the section x = x 0 were defined (in a numerical  calculation) in the form of 
"smoothened" step functions, and (u 'v '> ,  in the form of a "smoothened" column function. The function 
(v(x0, y)> in the initial section of x = x 0 is set  equal to zero .  This condition is approximate (due to the 
smoothness  of (u(x0, y)>) which is not of importance in view of the expected se l f - s imi la r i ty  of the mean 
cha rac te r i s t i c s  of the velocity field in the zone of mixing. A specification of finite value for the functions 
E and (v'2> at negative infinity cor responds  to a small  initial turbulence level, which always occurs  in an 
external  flow. (The values E = 10 -8 and <v'2> = 2/3 E -  were  taken in the numerical  calculations.) 

2 .  D i f f e r e n c e  S c h e m e  a n d  I t s  N u m e r i c a l  

R e a l i z a t i o n  

We make severa l  r em arks  on the nature of the sys tem of differential  t r ans fe r  equations (1.10). The 
equation for conservat ion of momentum [second equation of (1.10)] is not a diffusion-type equation and the 
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sys tem (1.10) is i tself  not of diffusion type. We may verify,  operating 
in the usual way [10], that the sys tem (1.10) has,  in addition to trivial  
septuple charac te r i s t i c s  x = const(k~ -= d x : d y  = 0), one more  rea l  
cha rac te r i s t i c  coinciding with the s t reamline  k 2 m dx : dy = (u) / (v ) .  
Thus the sys tem (1.10) has rea l  multiple cha rac te r i s t i c s .  The differ-  
ential opera tor  of Eqs.  (1.10) can therefore  be seen to be of weakly 
hyperbolic  type [3]. We reca l l  that the initial sys tem of differential 
equations (1.1)- (1.6) was simplified in approximation to a boundary 
layer  and was then closed at the level of the third moments .  This 
c losure  also led to a weakly hyperbolic  type, and not to the more  usual 
parabolic  differential opera tor  for tu rbulen t - t ransfer  equations. We 

may note in passing tha tBradshaw,  Fe r r i s ,  and Atwell [11] numerica l ly  solved a sys tem of three f i r s t -  
o rder  equations which also turned out to be not parabolic ,  but s t r ic t ly  hyperbolic [10], in calculating the 
mean cha rac te r i s t i c s  of the veloci ty  field in a turbulent boundary layer .  One charac te r i s t i c  was ver t ical ,  
as in 'any boundary - l aye r - type  sys tem,  for  this sys t em of equations. 

The difference scheme* for Eqs .  (1.10) was constructed on the basis  of principles set forth by Godunov 
[12] and has the fo rm 

m when v,~ < 0. 

u r a + i  u m + m + i  u m + t  m + t  .ffn+i 
m n - -  n m ~ + t  - -  n Z n + t  - -  n - - I  

llr+ Ax } vn Ay -~ 2 A y  - -  0 ;  

T m + i  T ra T m + t  __ T~ ~+ t  um+l u m + i  . [ m + l  __ 2x~+t+l , T m + t  
m n - - n  m , ~ + i  + m n - -  n - - i  n + l  ~ -  n - - i  = ] 1 ;  

Un Ax ~ vn Ay r ~n Ay 2 A y  

(2.1) 

~ z + l  __ e+a e~z+ t  __ e m + t  ~. : l  ~+n ++rn+[ t t m + i  

~n en ,5x ~- ~)n en Ay +7- '2 2 A y  

(~m+ t .  m 
'DT, - -n  - -  q)t+ 

U+++ A x  

r a m + i _ _  r ~ m + t  u ~ l r  m u m + l _ _ 2 u ~ a + i  ~ u m + i  
m " t t~+l  "*n 9 m r, T n ~ + |  -7- n - - |  

"~- =/3.  " Vn A y  Ax  2 2 A y  

m When v. > 0 

/ / m + t  __ 7~m l t~z+ l  ~ m + i  T r a + !  m + I  

un X;~ + v. = O; Av ~ 2Av (2.2) 

T'~n + t  m m + l  m + l  
~+t n - -  "[+~+ I +m T~ - -  Trt__l 

Uu ~ x  + vn Ay -1- r hy 
m + l  ., m" - t  _:_.fn~+t 

2hy = In; 

e m + l  m em+t e m + t  m u m + t  u r n + !  
m ~ n - -  e~i m m ~ - -  71--1 l T n  n + t  - -  ?z- - t  - -  f $ ,  

Unen ~ + v~en Ay ' 2 2 .Ay 

(Dnt+l  m ~ + 1  ~m+t  Z t m + l  l i ra  T m  r , m + l  O u m + t  A_ U * n + l  
- -  ~ l  . n " n + t  - - - -  ~t ~ n - - I  = ~ 3 "  

The averaging signs have been omitted in Eqs.  (2.1) and (2.2) for all values and we have set  T--= (U'V'> ; 
(p --= (V '2) ; e -= El/~, in these equations, 

*The sys tem (1.10) is r epresen ted  in the difference form (2.1), (2.2) without a continuity equation. We will 
speak below of its inclusion in a difference algori thm. 
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The di f ference  scheme  (2.1), (2.2) app rox ima tes  the s y s t e m  of d i f ferent ia l  equations (1.10) (without a con- 
tinuity equation) to the f i r s t  o rde r  of accu racy .  No specia l  invest igat ion into the s tabi l i ty  of the d i f ference  
scheme  was a t tempted.  The scheme  is implic i t ,  and its absolute computat ional  s tabi l i ty  was exper imenta l ly  
conf i rmed  by c a r r y i n g  out computat ions  for  di f ferent  r a t i o s  of s teps  Ax /Ay .  The calculat ion was always 
s table .  The s y s t e m  of different ial  equations (2.1), (2.2) can be wri t ten  in the f o r m  of the single m a t r i x  
equation 

where  A, B, and C a re  f o u r t h - o r d e r  square  m a t r i c e s , D  n is the vec to r  of the r ight  s ides ,  and X =  [u, r, e, 
r is the des i red  vec t o r .  The equations for  A, B, C, and D n a re  cons t ruc ted  f r o m  Eqs.  (2.1) and (2.2) and 
will not be p re sen ted  he re .  A m a t r i x  fitting method [4] d i scussed  in detai l  in [13] was used to solve Eq. 
(2.3). 

The t r a n s v e r s e  component  of the mean  flow veloci ty  in the  (m + 1)- th  l aye r  was calcula ted using an 
equation obtained f r o m  the continuity equation, that is ,  

~ dW 

(2.4) 

Calculat ion of the veloci ty  (v} can be d i rec t ly  included in the d i f ference  a lgor i thm.  However,  this i n c r e a s e s  
the o rde r  of the m a t r i x  to be t r a n s f o r m e d  at each node of the d i f ference  network [then solving the ma t r i x  
equation (2.3) by means  of fitting] by one and, consequently,  i n c r e a s e s  computat ion t ime .  A calculat ion of 
the t r a n s v e r s e  ve loc i ty  was c a r r i e d  out using Eqs.  (2.4). 

3. Numerical Results. Comparison 

with Experiment 

The flow field in the (x, y) plane was covered by a difference network with steps Ax and Ay in the 
directions of the x and y axes, respectively, in order to numerically solve Eq. (2.3). The number of nodes 
along the y axis was increased in the course of computation as a consequence of the expansion of the zone 
of mixing with increasing x coordinate (el. Fig. l).The sizes of the Ax and Aystepswere selected to ensure 

that the precision of the solution of the problem will be preserved.The matrix fitting algorithm for Eqs.(2.3) 
was realized in the form of a program written inALGOL for the ALPHA-6 translator of the ComputerCenter, 
Siberian Division, Academy of Sciences of the USSR (using the BI~SM-6 computer). On the average, 1.0 -10 3 
steps along the x coordinate were required to attain a self-similar region. 

Numerical results are presented in the form of curves in Figs. 2-5. Profiles of the numerical solu- 
tion are indicated in all the figures by solid lines and experimental profiles [6] by dot-dashed lines. In 

421 



Fig.  2, the digit  1 denotes the mean  ve loc i ty  p rof i le  (u> and the digit  2, the s t r e s s  of the turbulent  f r ic t ion 
(u ' v '> .  The d i f fe rence  in the behav i o r  of the ve loc i ty  p ro f i l e s  is  a lso  c h a r a c t e r i s t i c  for  the expe r imen ta l  

p ro f i l e s  [5, 6] (cf. Fig .  7 in [14], in which expe r imen ta l  p ro f i l e s  of these  two works  r evea l  as dis t inct  a 
behav io r  as in Fig.  2). The  ve loc i ty  prof i le  is  n e a r e r  p rev ious  data [5] on the in te rna l  side of the zone of 
mixing (~/ < 0). The p rof i l e  of the turbulent  s t r e s s e s  of the n u m e r i c a l  solution a re  shifted in the di rect ion 
of the ex te rna l  s ide of the zone (7 > 0) and dif fers  there  m o s t  f r o m  the expe r imen ta l  solution. Figure  3 

' I 
depicts  cu rves  for  the total  turbulence  intensi ty .  The co r re spondence  between the calcula ted prof i le  (UkUk> 
and the expe r imen ta l  p rof i le  is en t i re ly  sa t i s f ac to ry ,  though here ,  as in the case  of turbulent  s t r e s s ,  a 
shif t  towards  the zone of mixing adjacent  to the quiescent  fluid is r evea l ed .  The t r a n s v e r s e  flow veloci ty  
component  <v> is  depicted in Fig.  4. Separa te  components  of the total  turbulent  kinetic energy  balance  
(twice i ts  value) a re  plot ted in Fig. 5. The digit  1 r e f e r s  to convection,  2, to diffusion, 3, to dissipat ion,  
and 4, to genera t ion  of turbulent  energy .  All these  curves  r evea l  a quali tat ive and quantitat ive a g r e e m e n t  
to data f r o m  both [6] and [5] (cf. a s i m i l a r  g raph  in [15]). The ca lcu la ted  curve  for  the function <v'2} r e -  
vea l s  a qual i ta t ively  c o r r e c t  behav ior ,  but  with a not iceable  shift  toward  the ex te rna l  side of the zone of 
mixing .  I ts  m a x i m a l  value v a r i e s  by 20% less  than in [5], which va r i ed  by 25%less  than in another  ex p e r i -  
men t  [6]. The d i f fe rence  in the in tens i t ies  of the ve loc i ty - f i e ld  f luctuations m e a s u r e d  in [5, 6] is explained 
by  the d i f fe ren t  " in i t ia l  condit ions" of the expe r imen ta l  appara tus  in these  expe r imen t s .  The influence of 
ini t ial  conditions on the s t a t i s t i ca l  p r o p e r t i e s  of turbulence  in a zone of mixing has  undergone expe r imen ta l  
s tudy [14]. The gene ra l  conclusion is that  these  contr ibut ions affect  in a complex  way the adaptation of a 
displacing l a y e r  to a s e l f - s i m i l a r  s ta te  and that  the value of the intensi t ies  of the veloci ty  f luctuations a re  
functions of the level  of d i s tu rbances  in a boundary  l aye r  in a Washburn r i s e r  (cf. Fig.  1). 

The  author  wishes  to e x p r e s s  his apprec ia t ion  to S. K. Godunov for  consultat ion in ca r ry ing  out the 
cons t ruc t ion  of the d i f fe rence  scheme ,  and to A. T .  Onufriev for  d i scuss ion  of p r o b l e m s  in turbulent  t r a n s -  

f e r .  
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